2022 届高三年级第一次模拟考试(四)(常州)

化学参考答案

1. A 2. C 3. A 4. A 5. A 6. C 7. B 8. C 9. D 10. B

11. D 12. C 13. C 14. D

15. (14 分)

- (1) $2Fe^{2^+} + MnO_2 + 4H^+ = Mn^{2^+} + 2Fe^{3^+} + 2H_2O(3 \%)$
- (2) $(1)2K^{+} + 6Fe^{3+} + 4SO_{4}^{2-} + 6CO_{3}^{2-} + 6H_{2}O = K_{2}Fe_{6}(SO_{4})_{4}(OH)_{12} \downarrow + 6CO_{2} \uparrow (3 \%)$
- ②Fe(OH)₃(2 分)
- (3) pH 过低,溶液酸性较强, F^- 转化为弱酸 HF,溶液中 F^- 浓度减小, Ca^{2^+} 、 Mg^{2^+} 去除 率减小(2 分); pH 过高, MgF_2 、 CaF_2 沉淀转化为 $[MF_n]^{2^{-n}}$ 配离子,沉淀重新溶解, Ca^{2^+} 、 Mg^{2^+} 的去除率降低(1 分)
 - (4) 依据反应原理得关系式:

$$Mn^{2^{+}} \sim MnO_{4}^{-} \sim 5Fe^{2^{+}}$$

1 5
 $n(Mn^{2^{+}})$ 0.0700mol·L⁻¹×32.60mL×10⁻³ L·mL⁻¹(1 分)
解得 $n(Mn^{2^{+}})$ =4.564×10⁻⁴ mol(1 分)
 $c(Mn^{2^{+}})$ =4.564×10⁻⁴ mol÷(1.00mL×10⁻³ L·mL⁻¹)=0.4564 mol·L⁻¹(1 分)

(1) 消去反应(2分)

16. (15 分)

(3) 保护酚羟基, 防止其与 SOCl₂(或)中的氯原子发生取代反应(答到"保护酚羟基"暂给全分)(2分)

17. (15 分)

(1) ① Co^{2+} 与 NH₃形成络合物,溶液中 Co^{2+} 浓度减小,可减缓 Co^{2+} 与 OH $^-$ 反应生成

- Co(OH)₂ 沉淀的速率(2 分),有利于沉淀颗粒的生长,防止形成凝乳状沉淀或胶体(1 分)(3 分) ②取最后一次洗涤的滤出液于试管中,加入BaCl₂溶液,若无白色沉淀生成,则产品已 经洗涤干净(2 分)
 - (2) ①b(2 分) ②0.5(3 分)
- (3) 向其中加入 1 $mol\cdot L^{-1}$ H_2SO_4 至固体完全溶解(或不再产生气泡)(1 分),再加入 30% H_2O_2 溶液直至溶液的颜色不再加深(或开始产生大量气泡)(1 分),然后向溶液中加入 5 $mol\cdot L^{-1}$ 氨水,调节 pH 至 6(1 分)(写"向溶液中加入 5 $mol\cdot L^{-1}$ 氨水,调节 pH 至 6"也给分),过滤(1 分),向滤液中加入 5 $mol\cdot L^{-1}$ NaOH 溶液(1 分)(5 分)

18. (14 分)

- (1) ① $O_3+NO\frac{100\%}{}NO_2+O_2(3 分)$
- ②O₃将 NO₂氧化为更高价态的 N₂O₅(2 分)
- (2) 模拟烟气中的 SO_2 、水蒸气先与 NH_3 反应生成 NH_4HSO_3 (NH_4HSO_3 热稳定性差,易分解,使得脱硫率不高)(1分);通入 O_3 后, NH_4HSO_3 被 O_3 氧化成较稳定的 NH_4HSO_4 (促进上一步 NH_4HSO_3 的生成,从而提高脱硫率)(2分)(3分)
- (3) ①过量太多的氨气对提高硫、氮脱除率的影响不大,同时产生大量氨气尾气,既浪费原料(1分),也带来新的污染(1分)(2分)
- ② $\frac{n\ (O_3)}{n\ (NO)}$ >1 时, O_3 将 NO 氧化为 N_2O_5 ,此时 NH₃ 对 N_2O_5 的脱硝反应优先于 O_3 NH₃ 协同脱硫反应(脱硝速率大于脱硫速率),因此通入的 O_3 量越多,生成的 N_2O_5 越多,脱硝效率越大(2 分);同时由于通入的 NH₃ 量一定, N_2O_5 对 NH₃ 的消耗进一步限制了 NH₃ 与 SO₂ 反应的进行,使得脱硫效率减小(2 分)(4 分)