微专题 2 烯烃的加成、氧化规律

1. 烯烃的加成规律

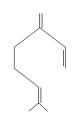
(1)共轭二烯烃的加成

分子中有两个碳碳双键,并且两个双键被一个单键隔开的烯烃叫共轭二烯烃。

①常见的1:1两种加成方式:

②共轭二烯烃的全加成

(2)不对称单烯烃的加成


2. 烯烃与酸性 KMnO4 溶液反应规律

烯烃与酸性 KMnO₄ 溶液的反应产物会因烯烃的结构不同而不同:

烯烃被氧化的部分	CH ₂ =	RCH=	R' C=
氧化产物	CO ₂ 、H ₂ O	R—C—OH O	R' C—O R" (酮)

「跟踪训练」

1.β-月桂烯的结构如图所示,一分子该物质与两分子溴发生加成反应的产物(只考虑位置异构) 理论上最多有()

A. 2种

B. 3种

C. 4种

D. 6种

答案 C

解析 β-月桂烯含有三个碳碳双键,其中有一个共轭二烯的结构,按如图方式编号:

9、 ,与两分子的溴发生加成反应的产物有 5,6 位上加成 1 分子溴单质,另一分子可以在 1,2 位或 3,4 位,还可以发生 1,4-加成加在 1,4 位,还可以是 1,2 和 3,4 位上发生加成,所以一共有 4 种结构,故选 C。

2. 有人认为 CH_2 — CH_2 与 Br_2 的加成反应,实质是 Br_2 先断裂为 Br^+ 和 Br^- ,然后 Br^+ 首先与 CH_2 — CH_2 一端碳原子结合,第二步才是 Br^- 与另一端碳原子结合。根据该观点如果让 CH_2 — CH_2 与 Br_2 在盛有 NaCl 和 NaF 的溶液中反应,则得到的有机物不可能是()

A. BrCH₂CH₂Br

B. ClCH₂CH₂Cl

C. BrCH₂CH₂F

D. BrCH₂CH₂Cl

答案 B

解析 CH₂==CH₂先与 Br^{*}生成产物易结合溶液中的阴离子。B 项中无溴原子。

- 3. 下列烯烃被酸性高锰酸钾溶液氧化后产物中可能有乙酸的是()
- A. CH₃CH₂CH=CHCH₂CH₂CH₃
- B. $CH_2 = CH(CH_2)_3CH_3$
- C. CH₃CH=CHCH=CHCH₃
- D. CH₃CH₂CH=CHCH₂CH₃

答案 C

解析 当物质的结构中出现 R′

时被氧化成羧基。

4.(2020·威海高二检测)某烃的分子式为 $C_{11}H_{20}$,1 mol 该烃在催化剂作用下可以吸收 2 mol H_2 ;

用热的酸性 KMnO₄ 溶液氧化,得到丁酮(CH₃—C—CH₂—CH₃)、丙酮(CH₃—C—CH₃)和琥珀酸(HOOC—CH₂—CH₂—COOH)三者的混合物,则该烃的结构简式为()

答案 A